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Stability analysis of abnormal multiplication of plankton using
parameter identi�cation technique

G. Ohno† and M. Kawahara∗;‡

Department of Civil Engineering; Chuo University; Kasuga 1-13-27 Bukyo-Ku; Tokyo 112-8551; Japan

SUMMARY

This paper presents the mathematical approach for the abnormal multiplication of plankton. An abnormal
multiplication can be expressed as an unstable problem and the stability of the system is investigated
by introducing eigenvalues of a mathematical equation. The stability of the system can be judged by
an eigenvalue based on the Lyapunov’s stability theory. In this paper, the Arnoldi-QR method is used
to obtain eigenvalues and eigenvectors of the system. The mode superposition method is employed
to create spatial distribution needed to analyse the stability. To obtain the objective eigenvalue, the
parameter identi�cation technique is employed. The �nite element method is used for the discretization
in space. Lake Kasumigaura, which is located in Ibaraki Prefecture in Japan, is selected and actual data
in 1975, 1976, 1991 and 2000 are used in order to investigate the stability of the speci�ed lake in
Japan. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: stability theory; �nite element method; eigenvalue; parameter identi�cation technique;
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1. INTRODUCTION

In recent years, a lot of social problems have been occurring by the phenomenon of eu-
trophication in many lakes and marshes. For instance, red tide, a typical example shown in
Figure 1 [1, 2], is one of the serious problems for the �shery industry, which is caused by the
abnormal multiplication of plankton. This does not only destroy the balance of the ecosystem
but also leads to the death of �sh, seaweed, etc. Usually, the outbreak of plankton occurs in
closed down water, such as lakes, marshes, bays, etc. as shown in Figure 2 [3, 4]. Recently,
several approaches have been suggested to estimate the outbreak of plankton. However, it
is very di�cult to explain the actual observed data by the computational methods. In this
research, an eigenvalue and eigenvector are introduced to judge the stability of the system
considering the numerical calculation of the biological problems.
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Figure 1. Red tide.

Figure 2. Closed down water.

It is known that the outbreak of plankton occurs suddenly. It is possible to think of this
problem as the stability problem [5]. And in general, it is very di�cult to estimate the mul-
tiplication of plankton and to research at which state the abnormal multiplication of plankton
comes to the �nal stage. As the approach presented in this study, it is suggested to regard the
phenomenon as the stability problem and to use the eigenvalue and eigenvector in order to
judge the possibility that the system reaches the outbreak of plankton. Using this technique, it
is possible to estimate when the water system would have abnormal multiplication of plankton
in the future.
In this paper, abnormal multiplication of plankton is analysed as the two-dimensional bio-

logical model with di�usion to investigate the stability of the system. The system is sometimes
unstable, but not always. Usually, the system is stable, but suddenly, it turns out to be unstable
in space and in time. An eigenvalue problem is introduced based on the Lyapunov’s stability
theory. The system is judged as stable or unstable using the eigenvalue of the system, which
can predict the abnormal multiplication of plankton.
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To analyse the stability of the system, the spatial distribution should be calculated at the
�rst stage. For this purpose, the mode superposition method is employed. The distribution
is obtained by the superposition of the eigenmode of the domain and is made from the
observation data obtained at the pre-assigned points. After obtaining the eigenvalue, opti-
mal values of three parameters can be obtained with the parameter identi�cation technique
[6], where, the three parameters are introduced in the model equation and the parameters
are multiplied to the equilibrium concentration of phytoplankton, zooplankton and nutrient.
Using these parameters, it is possible to estimate the abnormal multiplication of plank-
ton. The critical eigenvalue, with which the system is judged to be stable or not, can be
obtained.
The �nite element method is used for the discretization in space. As the case study, the

Lake Kasumigaura, which is in Ibaraki Prefecture in Japan, is modelled in this research.

2. MATHEMATICAL MODEL

In this paper, the well-known mathematical model, presented by Wroblewski and O’Brien [9],
is used, which can be expressed as

Ṗ=D1(P;xx + P;yy) + f(P; Z; N ) (1)

Ż =D2(Z;xx + Z;yy) + g(P; Z; N ) (2)

Ṅ =D3(N;xx + N;yy) + h(P; Z; N ) (3)

where P, Z and N are the concentrations of phytoplankton, zooplankton and nutrient, respec-
tively. In these equations, D1, D2 and D3 are the non-dimensional di�usion coe�cients of
P, Z and N , respectively. The three functions f(P; Z; N ); g(P; Z; N ) and N (P; Z; N ) are the
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Figure 3. Food chain.
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biological reaction terms, which are expressed in the following forms:

f(P; Z; N ) =
NP

�+ N
− �Z[1− exp{−�(P − P̂)}]−  P (4)

g(P; Z; N ) = �Z[1− exp{−�(P − P̂)}]− ��Z2[1− exp{−�(P − P̂)}]− ’Z (5)

h(P; Z; N ) =− NP
�+ N

+  P + ��Z2[1− exp{−�(P − P̂)}] + ’Z +! (6)

The boundary condition is described as

P= P̂; Z = Ẑ ; N = N̂ on �1 (7)

∇P · n=∇Z · n=∇N · n=0 on�2 (8)

where n is the unit outward normal vector, where the overhats in Equations (7) and (8)
denote the prescribed value on the boundary.

3. STABILITY PROBLEM

3.1. Lyapunov’s stability theory

The stability analysis is employed based on Lyapunov’s stability theory. Following the theory,
an equilibrium state and perturbation can be introduced to signify the stability of the system.
Equilibrium state means a state to be examined and the perturbation is added as a disturbance.
In the case where the system is completely stable, the disturbance settles down according
to time. In the case where the system is unstable, the disturbance becomes large as the
time passes. In this study, eigenvalue is used to judge if the system is stable or unstable.
The judgement of the stability can be determined by the real part of eigenvalue � of the
system as

Re{�}¡ 0 : Stable

Re{�} = 0 : Neutral

Re{�}¿ 0 : Unstable

where Re{ } means the real part of the eigenvalue.

3.2. Linearization

In this research, the stability of a certain equilibrium state, which is the pre-assigned state,
can be estimated. In order to obtain an eigenvalue of the system, the model equations are
linearized following Lyapunov’s Stability Theory. The equilibrium state is computed in a
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certain manner and perturbation is introduced to signify the stability. The eigenvalue can be
obtained based on the linearized equation.
The following procedure is employed in order to linearize the equation. Consider the new

solution P� +�P; Z� +�Z , and N� +�N , where the concentrations of phytoplankton, zoo-
plankton and nutrient at the equilibrium state are denoted by P�; Z�, and N�. The disturbances
�P;�Z;�N are brought to the equilibrium state which are assumed to be small. Substitut-
ing P�+�P; Z�+�Z , and N�+�N into Equations (1)–(3), the following equations can be
obtained:

�Ṗ=D1∇2(P� +�P) + f(P� +�P; Z� +�Z; N� +�N ) (9)

� Ż =D2∇2(Z� +�Z) + g(P� +�P; Z� +�Z; N� +�N ) (10)

�Ṅ =D3∇2(N� +�N ) + h(P� +�P; Z� +�Z; N� +�N ) (11)

Employing Taylor-expansion and omitting terms greater than the �rst order, the linearized
equation of Equations (9)–(11) can be derived as

��̇=F ·�� (12)

where

�� =



�P

�Z

�N


 (13)

F =




D1∇2 +
@f�

@P
@f�

@Z
@f�

@N

@g�

@P
D2∇2 +

@g�

@Z
@g�

@N

@h�

@P
@h�

@Z
D3∇2 +

@h�

@N




(14)

in which @f�=@P means the function that the values at the equilibrium state are substituted
after di�erentiating with respect to P.

3.3. Allowance parameter �

The estimation of how many concentrations at the pre-assigned state, i.e. the equilibrium state,
have the allowance to the ones of the critical state are very important. To estimate the critical
state, it is assumed that the critical state can be expressed by �1P� +�P; �2Z� +�Z; �3N� +
�N , where �(�1; �2; �3) is the allowance parameter and �P; �Z; �N are perturbations [6].
Equations (12)–(14) are transformed into

��̇ = F ′ ·�� (15)
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�� =



�P

�Z

�N


 (16)

F ′ =




D1∇2 +
@f��

@P
@f��

@Z
@f��

@N

�
@g��

@P
D2∇2 +

@g��

@Z
@g��

@N

@h��

@P
@h��

@Z
D3∇2 +

@h��

@N




(17)

Employing these parameters, the parameter identi�cation technique can be used in this
research and objective values of the allowance parameter will be obtained. The precise for-
mulation will be presented in Section 5.

3.4. Finite element method

The perturbations are assumed in the following form:

�P= P · e� t (18)

�Z = Z · e� t (19)

�N =N · e� t (20)

Introducing Equations (18)–(20) into Equation (15), the following equations can be ob-
tained:

�[M ]�=[H ]� (21)

where � is the eigenvalue used to estimate the critical state and

M =



M��

M��

M��


 (22)

H =



−D1S�� + FP�� FZ�� FN��

GP�� −D2S�� +GZ�� GN��

HP�� HZ�� −D3S�� +HN��


 (23)
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in which

M��=
∫
V
���� dV; S��=

∫
V
��;i��;i dV (24)

and FP�� is the discretized form of @f��=@P.

4. EIGENVALUE PROBLEM

4.1. Arnoldi’s method

To obtain the eigenvalue of the system, Arnoldi’s method is applied in this research [6, 8].
This method enables to decrease the memory of dimension and computation time. The al-
gorithm for the standard eigenvalues and eigenvectors problem (Cu=�u) is as follows: 1:
Start; Choose an initial vector v1 of unity norm and a number of step m. 2: Iterate; For
j=1; 2; : : : ; m do;

v̂j+1 =Cvj −
j∑

i=1
hijvi (25)

with

hij = (Cvj; vi); i=1; : : : ; j (26)

hj+1;j = ‖v̂j+1‖2 (27)

vj+1 = v̂j+1=hj+1;j (28)

This algorithm produces an orthonormal basis Vm=[v1; v2; : : : ; vm] of the Krylov subspace
Km=span{v1; Cv1; : : : ; Cm−1v1}. In this basis the restriction of C to Km is represented by
the upper Hessenberg matrix Hm, whose entries are the hij produced by the algorithm, i.e.

Hm= hij

The eigenvalues of C are approximated by those of Hm which is obtained as follows.

Hm=V T
m CVm

where one wishes to choose m su�ciently small so that the work in generating H and com-
puting its eigenvalues by the QR method is not excessive, but m needs to be su�ciently large
so that the selected eigenvalues of C are approximated accurately.

4.2. Application for generalized eigenvalue problem

If one wishes to �nd out the leading eigenvalue with maximum real part, it is common to
use the shift and invert strategy. If �0 is an approximation to an eigenvalue of interest, then
the shifted and inverted problem is

(C − �0I)−1u=�u (29)
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where �=1=(� − �0). Thus, eigenvalues of C close to �0 correspond to eigenvalues � of
Equation (29) with a large absolute value and one expects Arnoldi’s method to converge to
such eigenvalues.
In order to apply Arnoldi’s method to Equation (29) for the generalized eigenvalue problem

Equation (30), Equation (29) may be described as

(H − �0M)−1Mu=�u (30)

and to apply to Arnoldi’s method, the LU decomposition of H − �0M is carried out once,
and then each time (H − �0M)−1Mv is needed, (H − �0M)w=Mv is solved by forward and
backward procedures. This is much more economical than forming the matrix of Equation
(25) explicitly since it is usually full and also its dimension is much larger than m.

5. PARAMETER IDENTIFICATION

5.1. Performance function

In order to obtain the allowance parameters (�1; �2; �3), a parameter identi�cation technique is
used in this research. If the parameters included in the model equations change, the stability
of the system can also change. The critical parameter values change the state from stable to
unstable or unstable to stable. The parameter identi�cation technique can be usefully employed
to determine the critical allowance parameters.
This technique is equal to the estimation with minimization of performance function J ,

which means the sum of squared residual between calculated and objective values. This func-
tion is described as

J =
1
2

∫
V
(Re{�(�)} − �∗)T(Re{�(�)} − �∗) dV (31)

�∗ = (�∗
1 ; �

∗
2 ; �

∗
3 ; : : : ; �

∗
n)
T; Re{�(�)}=Re{(�(�)1; �(�)2; �(�)3; : : : ; �(�)n)T}

where �(�) is the eigenvalue of the system, n is the total number of nodal points, and �∗ are
objective eigenvalues. The critical eigenvalue Re{�}=0 is used as the objective value in this
paper. However, it is negative and is de�ned in order to be nearly equal to zero, because the
system changes from unstable to stable and the critical state can be obtained. The allowance
parameter value can be solved to minimize the function J .
The Fletcher-Reeves method, which is one of the conjugate gradient methods, is used in this

analysis. There are two advantages in this method, for example, the algorithm is very simple
and a stable solution can be obtained. The search direction d at the �rst step is computed by
the following equation:

{d(0)}= −
{

@J
@�(0)

}
= −

∫ [
@�
@�(0)

]T
(u− u∗) dv (32)
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where [@�=@�] is referred to as the sensitivity matrix. The boundary condition of the sensitivity
matrix is written as [

@�
@�

]
=0 on �1 (33)

Considering the performance function J (�+ �d) using the gradient d

J ({�}i + �{d})= 1
2

∫ {
�(�i) + �

[
@�
@�

]
di − �∗

}T{
�(�i) + �

[
@�
@�

]
di − �∗

}
dv (34)

the step size � that gives the minimum value of Equation (34) is obtained by partially
di�erentiating function J ({�}i + �{d}) with respect to � and setting the resultant equation
equal to zero.

�= −
dTi

{
@J
@�

}

dTi

[
@�
@�

]T [@�
@�

]
di

(35)

The parameter is renewed using {d} and �, which are obtained by Equations (32) and (35),
respectively. The new parameter is expressed as

{d}i+1 = −
{
@J
@�

}
i+1
+ �i{d}i (36)

where

�=

{
@J
@�

}T
(i+1)

{
@J
@�

}
(i+1){

@J
@�

}T
(i)

{
@J
@�

}
(i)

(37)

The renewed di+1 is used for the search direction at the next iterative stage i + 1.

5.2. Algorithm

In this research, the Fletcher Reeves method is employed to minimize J . The algorithm of
the parameter identi�cation technique is as follows:

1. Assume initial parameter value �(0), choose convergence criterion 	J
2. Calculate state value �(�)(0)

3. Calculate performance function J (0)

4. Calculate sensitivity matrix [@�(�)=@�](0)

5. Calculate initial gradient d(0) =−{@J=@�}(0)
6. Calculate step size � so as to minimize J (�(i) + �d(i))
7. Renew parameter �(i+1) = �(i) + �d(i)

8. Calculate state value �(�)(i+1)

9. Calculate performance function J (i+1)
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10. Calculate sensitivity matrix [@�(�)=@�](i+1)

11. Calculate �= {@J=@�}(i+1){@J=@�}(i+1)={@J=@�}(i){@J=@�}(i)
12. Calculate gradient of performance function J and d(i+1) =−{@J=@�}(i+1) + �d(i)

13. If |J (i+1) − J (i)|¡	J , then stop
14. Set i= i + 1 and go to 6

5.3. Sensitivity matrix

In order to solve the sensitivity matrix of the eigenvalue, the left eigenvalue problem has to
be used in this study, which is

�A�+ B�=0 (38)

�AT’+ BT’=0 (39)

where AT (or BT) is the transposed matrix of A(B). The eigenvectors of Equations (38) and
(39) are not the same, but the eigenvalues are the same. In this research, the maximum
eigenvalue of the real part is investigated and eigenvectors of real and imaginary parts are
used by solving the sensitivity matrix of the real part. The real part of the sensitivity matrix
can be obtained in the following manner:

Re
{
@�
@�

}
=−Re




’T
(
�
@A
@�
+

@B
@�

)
�

’TA�


 (40)

By calculating those matrices, the parameter identi�cation technique can be usefully applied.
Finally, the optimal parameter value which can make the system stable can be obtained.

6. MODE SUPERPOSITION METHOD

In the analysis presented in this paper, the equilibrium state should be pre-assigned. For this
purpose, the observation can be e�ectively used. However, observation data can be obtained
at the points of the limited numbers. Therefore, for the computational purpose, it is necessary
that the data of the spatial distribution of the pre-assigned state should be computed at all
nodal points. To do this, the Mode Superposition Method is used.

6.1. Helmholtz equation

The superposition of the eigenmode of the Helmholtz equation is utilized in this study to
carry out the spatial distribution. The Helmholtz equation is

∇2�+ k2�=0 (41)

where

∇2≡ @2

@x2
+

@2

@y2
(42)
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In Equation (41), � presents the basic mode of biological data of phytoplankton, zooplankton
and nutrient. The boundary condition is

∇� · n=0 (43)

The �nite element method is used for the spatial discretization. To obtain the eigenvalues
k2, the Householder-QR Method is used and eigenvectors � are computed by the backward
substitution.

6.2. Eigenvalue problem by FEM

To obtain eigenvalues k2 and eigenvectors �, the �nite element method is employed to dis-
cretize Equation (41):

S���� − k2M����=0 (44)

where

S��=
∫
�
��;i; ��;i d�; M��=

∫
�
��i ��i d� (45)

Equation (44) is dealt with as the general eigenvalue problem. Matrix M�� is symmetric, thus,
the matrix can be decomposed into two matrices by the Choleski Method as

M��=LT�� L�� (46)

Substituting Equation (46) into Equation (44), then

S���� − k2 LT�� L����=0 (47)

Eigenvector � is replaced by u�=L����, thus

S�� L−1
�� u� = k2 LT�� L�� L−1

�� u� (48)

k2 u�� = L−T
�� S�� L−1

�� u�� (49)

where

A��=L−T
�� S�� L−1

�� (50)

substituting Equation (50) into Equation (49), the following equation can be obtained:

k2 u�=A�� u� (51)

To �nd the eigenvalues k2 and the eigenvectors u� from Equation (51), the Householder-QR
Method and the Inverse Iteration Method is employed. The function � is equal to L−1u, the
eigenvector � is found by the Backward Substitution Method.
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6.3. Superposition

The mode superposition method can be described as follows. One of the concentrations of
phytoplankton, zooplankton and nutrient at the pre-assigned state is expressed by û, which is
considered as a state vector. The state vector can be assumed to be expressed by

û=
n∑

i=1
ui ci (52)

where ui is the eigenmode of the Helmholtz equation and ci is the unknown constant, which
corresponds to the vector which should be determined. The observation data at the observation
points are denoted by ũ, which are known constants. The performance function is

J =
∑
�
(ũ− û)2 (53)

The problem can be converted as follows. Find ci so as to minimize J (ci). Namely, �nd
the unknown ci so as to minimize the distance between observed and computed data. The
function J can be written as

J =
1
2

mx∑
j=1
(ûj − ũj)2 (54)

=
1
2

mx∑
j=1
(û2j − 2ûj ũj + ũ2j ) (55)

=
1
2

mx∑
j=1

[(
n∑

i=1
uij ci

)2
− 2

(
n∑

i=1
uij ci

)
ũj + ũ2j

]
(56)

(57)

using this, the derivatives of J can be computed.

@J
@cl

=
1
2

mx∑
j=1

[(
2

n∑
i=1

uij ci

)
uij − 2uljũj

]
(58)

=
mx∑
j=1

[(
n∑

i=1
uij ci

)
ulj − uljũj

]
(59)

=
mx∑
j=1

[
ulj

(
n∑

i=1
uij ci − ulj

]
(60)

(l=1; 2; 3; : : : ; n)

The conjugate gradient method is employed for the above equations to obtain the vector ci
to be determined. The algorithm of the Fletcher Reeves Method is expressed as follows:
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1. Assume initial parameter c(0), decide convergence criterion 	J , 	c and set i=0
2. Compute performance function J (0)

3. Compute gradient of performance function; d(0) = − {@J=@c}(0)
4. Solve step width � to minimize J (c(i) + �d(i))
5. Renovate parameter c; c(i+1) = c(i) + �d(i)

6. Compute J (i+1) and d(i+1)

7. If |J (i+1) − J (i)|¡	J , ‖c(i+1) − c(i)‖¡	c then stop else go to 8
8. i= i + 1 and go to 4

The Fletcher Reeves method is employed in this research. This algorithm is simple and the
computation is reasonably stable.

7. CASE STUDY

7.1. Lake Kasumigaura

Lake Kasumigaura is chosen to be analysed as the case study. This lake consists of three
small lakes: Nishi-Ura, Kita-Ura and Soto-Nasaka Ura. The lakes are located in the southeast
of Ibaraki Prefecture in Japan. The total area is 220 km2, making them second in size, within
Japan, to Biwa Ko in Shiga Prefecture. The catchment area of the lake is 2160 km2, occupying
approximately 35% of the land within Ibaraki Prefecture.
In this lake, there have been water quality problems and its damage has been very serious.
One of the well-known problems is the outbreak of ‘Microcystis aeruginosa’. It is a kind

of phytoplankton like red tide. By eutrophication, the water quality problem like ‘Microcystis
aeruginosa’ occurred. The location of Lake Kasumigaura is shown in Figure 4. Figure 5 shows
the mesh employed in this study.
It is considered in this study that the outbreak of Microcystis aeruginosa is related to the

stability problem based on the eigenvalues. The basic equation, Equations (1)–(3), include
various parameters. The parameter values are described in Table I. The values of biological

Figure 4. Lake Kasumigaura.
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Figure 5. Finite element mesh.

Table I. Parameter values.

Parameter Meaning

� Michaelis constant 0.1
� Zooplankton maximum grazing rate 1.2
� Zooplankton egestion coe�cient 2.31
� Ivlev constant 1.8
P̂ Zooplankton grazing threshold 0.083
� Phytoplankton nutrient loss coe�cient 0.15
’ Zooplankton death rate 0.25
! Nutrient generation term from the inside 0.0005

parameters always change, and are not the same values, and these values are original in each
lake. In this research, the data in Table I observed by the Fluid Pollution of Environment [9]
are used, which are the average values observed from 1973 to 1976 in Lake Kasumigaura.
The di�usion coe�cients D1, D2 and D3 in Reference [4] are also employed.

7.2. Spatial distribution

The observation at 13 points in the Lake Kasumigaura are carried out. In this research, to
assign the equilibrium state, the spatial values of the observed data at all nodal points should
be necessary. In order to create this equilibrium state, eigenvalues (1–20) of the Helmholtz
equation (Equation (41)) are utilized and the superposing of eigenmode is employed for the
mode superposition method. Using the mode superposition method, the distribution can be
obtained based on the relatively small number of data.
Figure 6 shows the observation points employed in this research.
The results of the mode superposition method are shown in Figure 7. This is the spatial

distribution of the pre-assigned state in May 1976. In order to create each distribution, the
concentration data at 13 points are given. Table II shows the concentration at each point.
In Table II, Phy., Zoo., and Nut. indicate the concentration of Phytoplankton, Zooplankton,

and Nutrient, respectively. Each value is non-dimensional because the mathematical model
employed in this research are non-dimensional equations.
Three components (P, Z , N ) are calculated with this method, and stability analysis is

conducted based on these functions as the equilibrium state.
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Figure 6. Observation points.

Figure 7. Concentration of P, Z and N : (a) phytoplankton, (b) zooplankton, and (c) nutrient.
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Table II. Concentration data at 13 points.

St.1 St.2 St.3 St.4 St.5 St.6 St.7 St.8 St.9 St.10 St.11 St.12 St.13

Phy. 0.14 0.09 0.08 0.09 0.32 0.10 0.07 0.09 0.12 0.37 0.18 0.18 0.22
Zoo. 0.09 0.09 0.08 0.10 0.13 0.09 0.10 0.11 0.11 0.11 0.10 0.12 0.11
Nut. 0.66 0.64 0.55 0.56 1.68 1.29 0.80 0.60 1.02 0.87 0.77 0.65 0.58

Figure 8. Maximum Eigenvalue.

Table III. Maximum eigenvalue of real part.

May Jun. Jul. Aug. Sep. Oct.

1973 −1:84628 6.12549 0.91376 0.90946 0.90455 −0:87963
1976 −1:83072 −1:83932 −1:82642 −1:83857 −1:56453 −4:83910

Multiplying 10−2 to each value.

7.3. Numerical results

The maximum eigenvalue of the real part is investigated (see Figure 8). It is con�rmed that
the stability of the system using the eigenvalue is adaptable. If the eigenvalue is negative,
the system is stable. If it is positive, the system is regarded to be unstable, which means
that the outbreak of plankton has occurred. For example, by employing the parameter values
in Table I and spatial distribution in Figure 7, the eigenvalues in 1973 and 1976 are calculated.
Table III shows computed results. In June, July, August and September in 1973, the eigen-

value is positive, which means that the system is unstable. Contrary to this, all data in 1976
and in May and October in 1973 are negative, which means the system is stable. In the
summer in 1973, actual outbreak of plankton was observed in the lake.
From these results, it can be said that the results of this research are adaptable to the actual

problem, which means that it can be suggested to employ the real-part eigenvalue of the
system in order to judge the stability of the eco-system.
The critical state is assumed to be obtained by the allowance parameter �(�1; �2; �3) which

are multiplied by P, Z , and N in an equilibrium state. The observed data in 1975, 1976, 1991,
and 2000 of the lake are employed to identify parameter �. With the parameter identi�cation
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Figure 9. Performance function J .

Figure 10. Maximum eigenvalue.

Figure 11. Parameter values.

technique, critical values of allowance parameter �1, �2, �3 are obtained as the maximum
eigenvalue as close as or equal to objective eigenvalues, which are chosen to be all nearly
equal to zero.
The results in May 1976 and in May 1976 are shown in Figures 9–11.
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Figure 12. Parameter values in each month. (a) converged � of 1975, (b) converged � of 1976,
(c) converged � of 1991 and (d) converged � of 2000.

In these years, the abnormal multiplication of plankton did not take place. By using pa-
rameter �, the outbreak of plankton in Lake Kasumigaura is estimated. Figure 9 shows the
Performance Function J . Figure 10 is the convergence diagram of maximum eigenvalue of
the system. Figure 11 represents the convergence of parameter �. The results in 1975 are
converged after the �fth iteration. The data in 1976 are converged after the �fth iteration,
too. Objective eigenvalue max(Re{�}) is set as −1:0× 10−4. From Figure 11, �1, �2 and �3
in 1975 are converged to 62:37; 0:981 and 19.769, respectively. If these values are multiplied
by the original equilibrium distributions, the stability of the system is unstable.
Figure 12 shows convergence values of �1, �2 and �3 in every month.
From each parameter value, it is considered that the system is unstable if the equilibrium

concentration of phytoplankton, zooplankton and nutrient are multiplied by 58–72, 0.96–0.98,
and 18–23. The sensitivity of zooplankton is shown to be much more signi�cant than those
of phytoplankton and nutrient.

7.4. Discussion of parameter �

As one of the discussions of this result, parameter identi�cation technique of one parameter
is employed in order to examine the physical meaning of parameter �.
At �rst, parameter �1 is identi�ed specifying �2 and �3. Figure 13 shows the computed result.

In this case �1 is converged to about 68.2 regardless of the value of �2 and �3. Figure 14
shows the case where �2 is identi�ed specifying �1 and �3. In this case, the converged values
di�er as the parameter �1 changes. Figure 15 shows the convergence of �3. Looking at the
results in Figure 13, it is shown that the signi�cance of the value �1 rules the characteristic
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Figure 13. Parameter �1: (a) �2 = 20:0, �3 = 30:0 and (b) �2 = 1:0, �3 = 40:0.

Figure 14. Parameter �2: (a) �1 = 70:0, �3 = 30:0 and (b) �1 = 68:206, �3 = 40:0.

Figure 15. Parameter �3: (a) �1 = 10:0, �2 = 1:0 and (b) �1 = 68:206, �2 = 1:0.

of the system. From the above discussions, the in�uence of the value of �1 is dominated in
the system because all converged values are varied by the choice of �1. Thus it can be said
that the concentration of phytoplankton in�uences the stability of Lake Kasumigaura.

8. CONCLUSIONS

In this research, a method for the estimation of the abnormal multiplication of plankton has
been presented. The point of this research is the judging of the system. The approach using an
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eigenvalue of the system is a relatively new method. Employing an eigenvalue, not only the
judgement of the stability of the system but also the prediction of outbreak of plankton can
be obtained. In Section 7.3, it is shown that �1, �2, �3 are converged to 58–72, 0.96–0.98, and
18–23. In Section 7.4, it is recognized that the parameter �1, which expresses the importance
of phytoplankton, rules the system. Changing the value of �1, the stability of the system also
changes. Especially, the in�uence of �2 on the system is small since the converged value of
�2 is very di�erent as shown in Figure 14. Actually, the factor of red tide is the outgrowth
of phytoplankton. It can be said that the cause of outbreak of plankton is related to the
concentration of phytoplankton mathematically.
From this method, prediction of the optimal concentration in the system is possible. It is

hoped that the theory of this research will be employed in some other analyses.
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